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An inverse simulation methodology based on numerical optimizationis presented. The methodologyis applied to
a simplified version of the slalom maneuver in the ADS-33D helicopter handling qualities specification. The inverse
simulationis formulated as an optimization problem with trajectory and dynamic constraints, pilot inputs as design
variables, and an objective function that depends on the specific problem being solved. A maximum speed solution
is described. The results show that numerical optimization is a reliable and flexible tool for inverse simulation,
both when the required trajectory is prescribed explicitly and when it is defined indirectly through geometric and
dynamic constraints. When the trajectory is defined indirectly, there is not a single acceptable trajectory, but rather
an entire family with noticeable differences in the helicopter dynamics and in the required pilot inputs. Even when
the trajectory is prescribed explicitly, multiple solutions exist. For handling qualities studies, the multiple solutions
may provide an indication of the amount of scatter in pilot ratings to be expected for a given aircraft and a given
maneuver. However, if the inverse simulation is used for simulation validation, then additional constraints may

have to be placed on the solution to make it unique.

Nomenclature
Vv = flight speed along the trajectory
X = distance along the centerline of the maneuver (Fig. 1)
y = lateral displacement from the centerline of the

maneuver (positive to the right) (Fig. 1)

yi(x) = trajectory that clears the 500- and 1000-ft markers
with y =k ft lateral displacement

Y500 = lateral displacement for x =500 ft

4 = altitude change from reference value (positive down)

6, &, = collective pitch of main and tail rotors, relative to
trim values

0., 6,y = lateral and longitudinal cyclic pitch, relative to
trim values

¢ = roll attitude of the helicopter

I. Introduction

AVORABLE handling qualities are a key objective of the de-
sign of military and commercial helicopters alike. Reducing
piloting effort improves mission effectivenessand enhances safety.
Extensive effort has gone into the formulation of criteria that relate
subjective pilot opinions to quantitative measures of the behavior of
a helicopter. The ADS-33D handling qualities requirements' are a
notable example. Besides a variety of time- and frequency-domain
criteria, ADS-33D includesa series of demonstrationmaneuvers “to
provide an overall assessment of the rotorcraft’s ability to perform
certain critical tasks.”! The computer simulation of these maneu-
vers has received considerable attention in the last few years. The
problem is generally formulated as an inverse simulation, that is,
the required trajectory of the helicopteris prescribed, and the solu-
tion consists of the time histories of the pilot inputs that make the
helicopterfly that trajectory. Therefore,inverse simulation could be-
come a useful tool to assess the maneuverability and agility charac-
teristics of a helicopter, piloting workload, and performance limits.
One approach to the solution of the inverse simulation problem
consists of recasting it into an optimal control problem’ by mini-
mizing, using gradientmethods, a performance index containingthe
differencebetweenrequiredand achievedflight path and augmented
with the aircraft’s ordinary differential equations (ODE) of motion.
Another method, developed by Thomson and Bradley® and Bradley
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and Thomson* resembles a trim calculation carried out at each time
step. The sequencein which states and controls are updated and the
updated equations are based on physical and kinematic considera-
tions. Reference 3 is based on a six-degree-of-freedan model. The
same basic technique has been used by Whalley’ in an interesting
study that included a validation through a series of piloted simu-
lation experiments. Hess et al.’ and Hess and Gao’ have proposed
an alternate technique, in which the trajectory is divided into small
steps; for a given step the initial controls are known, and the equa-
tions of motion are integrated with guesses of the controls at the end
of the step. The errors between actual and desired trajectories are
calculated,and the controls at the end of the step are adjustedusing a
Newton-Raphson technique to reduce the errors to zero. This tech-
nique is named the integration inverse method, as opposed to the
differentiation inverse method of Ref. 3 that requires the differen-
tiation of the desired trajectory. The same technique has been used
by Rutherfordand Thomson® and compared with that of Ref. 3. The
integration method was found to be an order of magnitude slower
than the differentiationmethod, but more flexible and convenientto
set up. The two methods showed comparable accuracy.

Reference 8 discusses the occurrence of numerical instabilities
in both the differentiationand the integration inverse simulation al-
gorithms. De Matteis et al.” propose a variation of the algorithm of
Ref. 6 in which the Newton-Raphson solution at every time step
is replaced by a local optimization problem. This technique elimi-
nates some numericalinstabilitiesobservedin Ref. 6. Lee and Kim'?
formulate the inverse simulation as an optimization problem with
equality constraints. A variational approach is used to derive opti-
mality conditions,and a method of finite elements in time is used to
discretize the resulting equations. Borri et al.!! transform the equa-
tions of motion of the aircraft into algebraic equations using finite
elements in time. The trajectory constraints are also expressed in
algebraic equation form. The combined system is solved using a
Newton-Raphson technique. Finally, Yip and Leng have provided
stability tests for the integration method applied to time-invariant
systems.'? References9-12 do not address helicopterproblems. Ex-
ceptfor Ref. 8, the studiesjust mentioned do not take rotor dynamics
into account.

When inverse simulation is used for helicopter handling quali-
ties studies, it is not immediately obvious which specific trajectory
should be prescribed. For example, ADS-33D does not indicate
precise trajectories for the demonstration maneuvers. Instead, it re-
quires that certain geometric and dynamic conditions be satisfied.
For example, the slalom of paragraph 4.2.6 requires that the turns
extend from between 50 and 100 ft from the centerline! and that
the speed be of at least 60 kn. One of the conclusions of Ref. 5
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is that there is no guarantee that a preassigned aircraft trajectory
is optimal, and a pilot could perform the maneuver better than the
inverse simulation would suggest. This conclusion applies to all of
the studies described here because in all cases the trajectory is fixed.

In light of the preceding discussion, the main objectives of the
paper are given here:

1) The first objective is to present a new methodology for in-
verse simulation, based on the use of numerical optimization. This
methodology differs from those mentioned earlier because it op-
erates on a family of possible trajectories (and, therefore, of pilot
command time histories) among which it selects the best, based
on one or more performance criteria. Traditional inverse simulation
with a fixed prescribedtrajectory can be recovered as a special case.

2) The second objective is to describe the application of this
methodologyto a simplified version of one of the ADS-33D demon-
strationmaneuvers,namely, the slalommaneuver of paragraph4.2.6
of the specification.

3) The third objective is to discuss some theoretical aspects and
practical implementation issues of the proposed methodology.

II. Simulation Model

The mathematical model of the helicopter used in this study is
a nonlinear blade-element-type model that includes fuselage, ro-
tor, and main rotor inflow dynamics. The six-degree-of-freedom,
rigid-body motion of the aircraft is modeled using nonlinear Euler
equations. Linear aerodynamics are assumed for fuselage and em-
pennage. The blades are assumed to be rigid, with offset hinges
and root springs. Flap and lag dynamics of each blade are modeled.
The main rotor has four blades. The configuration parameters are
representativeof a hingeless rotor helicopter similar to the BO-105.
The coupled system of rotor, fuselage, and inflow equations of
motion is written in first-order form. The state vector has a total of
31 elements: flap and lag displacements and rates for each of the
4 blades (16 states); 12 rigid-body positions, velocities, rates, and
attitudes; and 3 inflow states. The trim procedure is the same as in
Refs. 13 and 14. Thus, the rotor equations of motion are transformed
into a system of nonlinear algebraic equations using a Galerkin
method. The algebraic equations enforcing force and moment equi-
librium are added to the rotor equations, and the combined system
is solved simultaneously. The solution yields the harmonics of a
Fourier series expansion of the rotor degrees of freedom, the pitch
control settings, the trim attitudes and rates of the entire helicopter,
and the main and tail rotor inflow. The free-flight maneuver simula-
tion is carried out by integrating the nonlinear equations of motion
with the variable-step, variable-order solver DASSL.!>:16
III. General Formulation of the Inverse
Simulation Problem

The inverse simulation problemis formulated in nonlinear mathe-
matical programming form. Therefore, the objectiveis to determine
a vector X of design variables that minimizes a scalar objective
function F'(X), subject to constraints g;(X) <0, j =1,..., M.

The vector of design variables is composed of the values of four
pilot inputs, namely, collective pitch, longitudinal cyclic pitch, and
lateral cyclic pitch for the main rotor and collective pitch for the tail
rotor at preassigned time points during the maneuver, that is,

T =161)0(1)6(1) (1), . .., B(1,)01c(1,) 01.(1,) Oy (1,)]

)]

In this study, the times ;, k =1, . .., n will be equispaced,but need
not be. The controls are assumed to vary linearly between consecu-
tive time points; at the initial time 7 they are set to their respective
trim value. Therefore, the number of design variables is equal to
N =4n.

The constraintsare defined based on the description of the slalom
maneuver in paragraph 4.2.6 of the ADS-33D handling qualities
specification.! The suggested maneuver is shown in Fig. 1. The
present study will address a simplified version of the maneuver,
with only one excursion to the right of the centerline and one to the
left, instead of two, and a total length of 1500 ft along the centerline
instead of 2500 ft. Two types of constraints appear in the problem.
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Fig.1 Slalom maneuver, from paragraph 4.2.6 of ADS-33D.!

The first consists of constraintsthat are enforcedat only one pointin
spaceor time. The second consistsof constraintsthatare functionsof
space or time and that have to be satisfied over the entire maneuver.
The constraints enforce the following requirements:

The turns must be at least 50 ft from the centerline at 500 and
1000 ft. This results in the two point constraints

g (X) =1+ y(1)/50=<0 )
for t when x =500 ft and
X)) =1-y(1)/50=<0 3)

fort when x =1000 ft. The quantities x and y are, respectively, the
position along the axis of the maneuver (e.g., along a runway) and
the axis perpendicularto it (see Fig. 1).

The turns must be no more than 100 ft from the centerline at 500
and 1000 ft. This results in the two additional point constraints

(X)) =—-1—-y()/100 <0 4)
for t when x =500 ft and
&(X) =—1+ y(1)/100 <0 )

for t when x =1000 ft.

The desired performance calls for an airspeed of at least 60 kn
during the entire maneuver, which is expressed mathematically in
the form

gAaX; ) =1-V(@)/60 <0 6)
where V() is the velocity of the helicopter in knots. Whereas the
previousconstraintswere enforcedat only specified points of the tra-
jectory, this is a continuousconstraintthat must be satisfied through-
out the maneuver. The constraintis collapsed into one number that
is the integral of the violation over the entire maneuver

T
85(X) =] (ga(X;1))*dr <0 (7
0
where the bracket function is defined as
8a(X; 1) for 8a(X;1) =0
X;1)) =
(84X 1)) {0 for ga(X;0) <0 8)

and the integrand is squared to make the gradient of gs5(X) contin-
uous.

A criterion from the previous version of the specification,
ADS-33C, called for changes not greater than 10 ft from the ref-
erence altitude during the maneuver. Although the current ADS-
33D specification no longer includes this criterion, the ADS-33C
limits were implemented anyway. If the maneuver starts at a refer-
ence altitude z,¢ this implies that z,.s — Az <z(f) <zyer + Az, with
Az =10 ft. For convenience, the reference altitude in this study is
set to zero, which results in the constraints
gs(X, 1) =—z(t)/ Az —-1=<0 gc(X) =z(t)/Az—-1<0

©
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These two constraints are defined over the entire maneuver and
are collapsed into point constraints in the same way as for gs(X)

[Eq. (7)] that gives
T
(gs(X:0))*dr <0
0

86(X) =]

T

(gc(X; 1)) dr <0 (10)

0

&71(X) =]

The heading angle y is required to be within an upper and a
lower bound throughout the maneuver. This requirement is not in
ADS-33D and is included to avoid solutions that are mathemat-
ically acceptable but practically meaningless, such as a helicopter
performing the maneuver while continuouslyspinning aboutits yaw
axis. Therefore, the absolute value of the heading is required to be
less than 45 deg, which results in the following two continuous
constraints

gp(X, 1) = —y(1)/45deg — 1 <0
gr(X, 1) = w(t)/45deg — 1 <0 (11

that are collapsed into the point constraints

T
gs(X) =j (gp(X; 1)) dr <0
0

T

(ge(X; 1)) dr <0 (12)

0

8o(X) =]

ADS-33 requires that the maneuver be completed on the cen-
terline. To satisfy this requirement, first the following quantity is
defined as

2 _
Yave =

1 Xmax
j y? dx (13)

Xoax — 1500 500

which is the average value of the square of the lateral displacement
from the centerline after the completion of the maneuver. The quan-
tity X,y 18 the distance at the end of the maneuver. The simulation
is carried out for a prescribed time, but the speed of the helicopteris
not necessarily constant, and, therefore, the actual value of x,,, is
not fixed and depends on the particular maneuver. The constraint
then becomes

210(X) =Yae/2—-1=<0 (14)
whichrequiresthat the averagelateral displacementbe less than 2 ft.

IV. Preliminary Step: Trajectory Matching

Some optimization algorithms require that the initial solution be
feasible (i.e., such that all of the constraints are satisfied); others
can start from an infeasible solution (i.e., one that violates one or
more constraints) and seek a feasible one. In general, however, it is
advisable to start from a feasible solution. Therefore, the objective
of this preliminary step is to generate such a feasible solution by
matchinga preassignedtrajectory that satisfies all of the constraints.
This trajectory is defined as follows:

yp(x) =
3 2
5hl2] -3 =
500 500
x —500)\° x =500\
7501 -6 +4
500 500

x —1000\)° x —1000\°
7501 -3 /== +of —=
500 500

0 x =>1500

x <500

500 <x <1000

1000 <x <1500

(15)
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plus zp(x) =0. This trajectory satisfies all of the constraintsexcept
for those that enforce a minimum airspeed [Eq. (7)] and bounds
on the heading, Eq. (12). The objective function for this step min-
imizes the deviation of the actual trajectory from the required one
and includes the constraints g5(X), gs(X), and go(X) in the form
of penalty functions. The formulation for this step can be obtained
from the general formulation described in the preceding section by
removing all of the constraints and defining the objective function
as
T

F(X) =] [(v = yp)? + 22]7 dt + rsgs(X)
0

+ rggs(X) + rogo(X) — min (16)

The penalty parameters s, rs, and rq are all set equal to one. There-
fore, the solution of this step requires the unconstrained minimiza-
tion of the augmented objective function F(X).

In principle, the optimization could be carried out only until the
solution satisfies all of the constraints of the general formulation
and then switch to the desired constrained optimization. However,
in this section the optimization will be performed until convergence,
both to explore some important general features of the optimization
process and also because this step provides a different approach to
the inverse simulation problem with fixed trajectory. The uncon-
strained optimization problem is solved using a BEGS'” algorithm,
as implemented in the optimization code DOT.!?

A. Practical Implementation Issues
1. Problems due to Aircraft Instabilities

Without automatic stabilization, all helicopters are unstable in
hover. Some configurations, such as that of the presentstudy, remain
unstablein forward flight. This can affect the trajectoryoptimization,
asis evidencedby Fig. 2, which shows an inverse simulation carried
outfor 14 s of simulated time. The vector X contains the four control
inputs at 1-s intervals, for a total of 56 elements. The Fig. 2 shows
the converged solution, which clearly does not match the required
trajectory very well.

Figure 3 helps explain the problem. Figure 3a shows the portion
of the search direction§ correspondingto the lateral cyclic pitch 6,
at the last iteration of optimization. Recall” that the optimizationis
composed of two basic steps, that is, the determination of a search
direction S and a one-dimensional minimization of the objective
F(X) along S that updates the design X accordingto X =X, + aS,
where a is the independent variable of the one-dimensional mini-
mization. Therefore, Fig. 3 shows that the optimizer would like to
decrease 0, for the first 4 s, that is, move the stick farther to the
right. Figure 2 shows that instead the stick should be moved farther
to the left to match the desired trajectory. Therefore, the optimizer
generates the wrong maneuver. The gradient of F'(X) with respect
to the 6. inputs is shown in Fig. 3. To obtain the gradients using
finite difference approximations,each control is slightly increased,
and, therefore, Fig. 3b shows the changes in the objective function
caused by a small perturbation of lateral stick to the left. (Note that
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Fig.2 Solution when the complete pilot input time history is included
in the optimization; the markings on the curves are at 0.5-s intervals.
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Fig.4 Solution when the complete pilot input time history is included
in the optimization; the markings on the curves are at 0.5-s intervals.

the search direction is close to a scaled version of the negative of
the gradient.)

The objective function (i.e., the discrepancy from the required
trajectory) increases with larger left stick inputs at the beginning
of the maneuver. This apparent inconsistency can be explained by
consideringFig. 4. Figure 4 shows one of the perturbationsof lateral
cyclic used to calculate the gradient of F(X), namely, that at time
t =3 s, and the corresponding perturbation of the trajectory y. Be-
cause the helicopteris unstable, the triangularimpulse produces rel-
atively large perturbationstoward the end of the maneuverand much
smaller ones in the first few seconds. Therefore, the component of
the gradient reflects overwhelmingly the end of the maneuver and
produces the unrealistic results mentioned before. If the helicopter
dynamics had been well damped, the effect of the perturbation of
lateral cyclic would have been confined to the instants immediately
following the input.

The problem can be eliminated by performing the optimization
over overlapping segments of the trajectory rather than over the en-
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Fig. 5 Optimization with overlapping segments: V, actual trajectory,
and V¥, desired trajectory.

tire trajectory. In Fig. 5 each segment lasts 3 s, and the last 2 s of a
given segmentoverlap with the first two of the next. The trajectories
of the first second of each segment are then joined together and pro-
vide the required complete trajectory. The design vector X contains
only the controls corresponding to the 3 s of the segment. Because
the controls are updated every 0.5 s, the total number of design vari-
ables is 24. Therefore, the original optimization problem has been
replaced by a sequenceof smaller problems that, as a group, provide
the complete solution. Figure 5 shows that the agreement between
actual and required trajectoriesis excellent, except for the first 2-3 s
in which the required trajectory perhaps requires too high a lateral
load factor. Figure 5 also shows the trajectories calculated over each
segment. One of them is marked with a thicker line for illustration.
The trajectory of Fig. 5 satisfies the criteria of ADS-33D (except,
obviously, for the reduction to two turns rather than four).

The length of each segment and the extent of the overlap of con-
secutive segments are likely to depend on the dynamics of each
aircraft configuration, especially if there are unstable modes. The
values used were the longest length and the shortest overlap that
would reliably work in all cases, but a study of different aircraft
configurations was not performed. The configuration used in this
study (small-size aircraft, hingeless rotor, unstable) is probably a
worst-case scenario, and, therefore, the 3-s length and 2-s overlap
are likely to be a safe choice in most cases.

2. Effect of Numerical Tolerances

An important practical issue is the accuracy of the gradients
that depends on the finite difference step size. The integration of
the equations of motion of the helicopter is carried out using the
variable-step,variable-ordersolver DASSL '3 thatattempts to satisfy
user-defined local error tolerances. Therefore, the finite difference
step size must be selected consistently with these error tolerances.
The interaction between gradient calculation and the integration of
the equations of motion is an importantissue in trajectory optimiza-
tion: Ref. 19 points out thatless sophisticated,fixed-step/fixed-order
ODE solvers can often be more efficient overall because they do not
introduce numerical noise in the gradients.

However, this problem cannot be avoided in helicopter applica-
tions if one wants to devise inverse simulation algorithms that can
be used with the most sophisticatedhelicoptersimulation models. In
these models, the mathematical expressions can be so lengthy that
it may not be convenient to include all of the terms in traditional
mass, damping, and stiffness matrices, but it is necessary to leave
many of them in a generic form as an external nonlinear forcing
function (see, for example, Ref. 20) on the right-hand side of the
governing equations. Therefore, the ODE solver needs to perform
Newton-Raphson type iterations at each integration step, whether



-100

=10

100 :
XJ\ v, =10
150 i r P |

0 200 400 600 800 1000 1200 1400 1600
x  (ft)

50 Y4 :\
2(x), eR=10-4 %i(%) L 10" 102 10°
18 , )

Fig. 6 Effect on the final trajectory of the finite difference step in gra-
dient calculations.

the step size is fixed?! or variable,!>!6 and this brings back the need

to define a convergence criterion through an error tolerance.

In the present study, the relative and absolute local errors used
for the ODE solution are both equal to 107>, This value offers a
good compromise between accuracy and computational effort.'® To
explore the effect of numerical tolerances, the optimization was
performed with several values of the step size used in the finite
difference calculation of the gradients. Each design variable was
increased by a given relative amount e. If the absolute value of
the perturbation was smaller than a given value e,, the value e,
was used instead. Figure 6 shows the results of the optimization
for eg =107", 1072, 1073, and 107, and e, =0.ley in all cases.
Both the lateral displacement y(x) and the vertical displacement
z(x) are shown. The curves for the first three values of ey are es-
sentially superimposedin the scale of the Fig. 6. The corresponding
values of the objective function F(X) are 44.9, 12.8, and 40.6, re-
spectively; therefore, ez =1072 gives the best accuracy in this case.
When ez =107 the match between actual and required trajectory
is poor, the value of the objective is 959.8, and the 18 s are not
sufficient to complete the maneuver. The ADS-33D criteria would
not be satisfied. It is clear that calculating the gradients with a fi-
nite difference step comparable to the local error tolerance for the
ODE solverleads to poor results. On the other hand, relatively large
step sizes do not degrade seriously the accuracy of the solution, and
even a size of 10% of the independent variables (with an absolute
lower bound of 0.01) gives good results. All of the trajectories pre-
sented in the rest of the paper have been obtained with ez =1072
and e, =1073. These values are also likely to be adequate for more
general cases (i.e., different maneuvers or aircraft configurations) if
the solution of the governing equations is obtained with local error
tolerances of 107> or tighter.

B. Multiple Acceptable Trajectories

When acceptable trajectories are defined indirectly, through a
set of criteria, multiple solutions can exist. Figure 7 shows three
acceptable solutions for the simplified slalom maneuver, obtained
by matching three different trajectories. The baseline trajectory is
that of Eq. (15). For the other two, the constant 75 in Eq. (15) is
replaced by 55 and 95. This corresponds to lateral excursions from
the centerline of 55 and 95 ft, respectively, and, therefore, almost
to the limits prescribed by ADS-33. For each curve in Fig. 7, the
dashed line indicates the required trajectory and the solid line the
actual trajectory.In all cases the match is very good, especially after
the first 2-3 s. The altitude changes are very small in all cases. The
lowerplotin Fig. 7 shows the time histories of the roll angle ¢. These
values are taken with respect to the trim state. Differences of 20 deg
or more of roll angle among the trajectories can be easily seen.
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Fig. 8 Cyclic pitch inputs for three acceptable trajectories for the
slalom maneuver.

The time histories of lateral and longitudinal cyclic are presented
in Fig. 8. It should be noted that all the pitch values presented in
this paper are perturbations from their trim values. Differences in
magnitude, phase, and frequencyof the inputsare evident,especially
in the first half of the maneuver. Overall, these results show that the
slalom requirements of ADS-33D can be satisfied by quite different
maneuvers.

Multiple acceptabletrajectoriescan also be due to the presence of
local minima in the trajectory optimization problem. To study this
issue, the trajectory matching problem was repeated three times for
the trajectory of Eq. (15), with differentinitial guessesfor the control
time histories. The differences among the trajectories are minimal
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(the curves would be superimposed in the scale of Fig. 5), and the
three altitude profiles do not differ by more than 2 ft throughout
the maneuver. However, some difference can be seen in the time
histories of the roll angle ¢, shown in Fig. 9. For example, the roll
reversal to clear the first marker at 500 ft, from about —50 to about
50 deg, occurs smoothly in trajectory 3. Instead, in trajectory 1, the
roll to the right s too fast, and there is a short left roll maneuver that
reduces ¢ by about 20 deg before the roll to the right resumes. A
similar maneuver can be seen in trajectory 2. The same qualitative
differencesamong trajectoriescan be seen later, when the helicopter
starts rolling to the left before clearing the marker at 1000 ft. Here,
both trajectories 1 and 2 are smooth, whereas a brief reversal is
visible in trajectory 3.

The corresponding inputs of lateral cyclic are shown in Fig. 10.
The inputs for trajectory 1 have the largest excursionsof the threein
the initial seconds of the slalom, whereas those for trajectory 3 are
the largest before the second marker. In the present study, no upper
bounds were placed on magnitude and rate of the pitch inputs, and,
therefore, the solution does not take control saturation into account.
Because each design variable is the value of one control at a given
time, this could be easily done by placing bounds on the magnitude
of the design variables, alone or in combination. Magnitude and
rates in Fig. 10 do not appear unrealistically high, but, in general, it
will be prudent to include saturation constraints.
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Fig.9 Time histories of roll angle ¢ for three solutions of the trajectory
matching problem; lateral displacement = 75 ft from centerline.
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Fig. 10 Time histories of lateral cyclic pitch 6. for three solutions
of the trajectory matching problem; lateral displacement = 75 ft from
centerline.
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Fig. 11 Harmonics of lateral cyclic pitch ;. for three solutions of the
trajectory matching problem; lateral displacement = 75 ft from center-
line.

The harmonics of the lateral cyclic input are shown in Fig. 11.
The slalomis completedin about 14 s. If this is taken as the period of
the maneuver, then the corresponding frequency is about 0.4 rad/s.
The largest contribution is at twice this frequency because of the
inputs required to clear the two markers. A second peak is visible
at a frequency of about 2 rad/s, which is near the frequency of the
Dutch roll mode in steady straight flight. The analysis of the pilot
input spectrum can provide important information on the handling
qualities’ characteristicsof the aircraftin the maneuver. In general, a
higherfrequencycontentis associatedwith increasedpilot workload
and degraded handling qualities (very interesting discussions of this
issue can be found by Padfield et al.?? and Blanken et al.?®).

V. Trajectory Determination Through
Constrained Optimization

The slalom demonstration maneuver in ADS-33D does not re-
quire that a specific trajectory be matched, as long as the constraints
describedin Sec. III are satisfied. As a consequence, an entire fam-
ily of trajectories will generally exist, and it will be possible to
single out specific ones to address a variety of different objectives.
In this section, for example, the goal is to study ADS-33D com-
pliant slalom maneuvers that maximize flight speed, with the idea
that these are going to be the most aggressive maneuvers. Mathe-
matically, the objective function will then be the average speed over
each 3-s segment, that is,

F(X) = —k] V dt — min 17)

where k is simply a constant scale factor to keep the size of F(X)
reasonably small. The constraints are those described in Sec. III.

Two additional constraints keep the trajectory y(x) within the
corridor shown in Fig. 12. The curve marked y;s is that defined
by Eq. (15), and those marked with ys, and y,qo are obtained from
Eq. (15) by replacing the constant 75 with 50 and 100, respec-
tively. The left limit of the trajectory is the upper curve in Fig. 12,
defined for every x as the smallest among yso, Y100, Y75 £ 10 ft for
x < 1000ft,and y;5 £ 5 ft forx =1000ft. The largestof those values
defines the right limit of the trajectory. These trajectory constraints
are implemented using the bracket functions and have a form sim-
ilar to that of Eq. (7). The corridor is necessary because otherwise
the optimization in the first 3-s segment might not be aware of the
presence of the marker at 500 ft and would not begin the first turn to
the left. Similarly, the 1000-ft marker may not be reached within 3 s
of clearing the 500-ft marker, and, therefore, the optimizer would
delay the preparation for its clearing. With those that define the re-
quired corridor, the total number of constraints of the optimization
problemis 12.
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Fig.13 Maximum speed trajectories for various slalom entry speeds.

The constrained optimization problem is solved using a modi-
fied method of feasible directions (MMFD), as implemented in the
optimization code DOT.!"® DOT can also solve constrained opti-
mization problems using sequential linear programming (SLP) or
sequential quadratic programming (SQP) algorithms. Limited nu-
merical experimentation showed that SLP requires a very careful
management of move limits on the design variables and sometimes
fails. SQP proved slightly more robust, but required about three
times the computational effort of MMFD. The MMFD algorithm
proved very reliable and reasonably efficient.

The results of the optimizationare presentedin Figs. 13-15. Each
contains several curves, correspondingto differentinitial velocities
for the maneuver. In fact, the first optimization, carried out for an
entry speed of 60 kn, revealed that this initial speed could not be in-
creased by more than 1-2 kn in each segment. The optimization was
repeatedfor an entry speed of 65kn, and then for speedsraisedin 2 kn
incrementsuntil, at 71 kn, it was no longer possible to find a feasible
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Fig. 15 Harmonics of lateral cyclic pitch 0y, for various slalom entry
speeds.

solution. Although the slalom entry speed could itself be a design
variable in the optimization, this was not done in the present study.
The various trajectories are shown in Fig. 13. As the speed in-
creases, the turns become wider until, at 71 kn, it is not possible to
remain within 100 ft from the centerline at x =500 ft. The time re-
quired to complete the maneuver (i.e., to cross the x = 1500-ft line)
is also indicated in Fig. 13 and ranges from 14.9 to 13.4 s as the
entry speed increases from 60 to 69 kn. In all cases, the optimization
increases speed by about 1-2 kn over the entry speed. Not surpris-
ingly, the plots of z(x) indicate that the optimum maneuvers make
the helicopterlose altitude, to trade potential for kinetic energy and
increase speed. Figure 14 shows the time histories of the roll an-
gle ¢. Clearly, as the maneuver becomes more aggressive, the peak
values of the roll angle increase; the increment in the initial turn is
of almost 20 deg. In the final seconds of the maneuver the changes
in ¢ become much more pronounced as the speed increases.
Information on constraint activity is presented in Table 1. Each
column refers to an entry speed and each row to a 3-s optimiza-
tion segment. Only four constraints ever become active or violated,
namely, the lower bound V,;;, on flight speed [Eq. (6)], the upper
bound on altitude 1088 zn. [Eq. (9)], and those that define the cor-
ridor of Fig. 12. The zn,ax constraint is active for several segments
at all entry speeds, confirming that the optimizer tries to make the
helicopterlose altitude to gain energy. The Vi, constraintbecomes
active only for an entry speed of 60 kn. It does so at the beginning
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Table1 Active constraints for the maximum speed slaloms; underlined constraints are violated
Entry velocity, kn

Time, s 60 65 67 69 71
0-3 Vmina Zmax » y_Ua Yu Zmax none yu
1-4 Vimins Zmaxs Yu Zmax> YU » yLb Zmax none yu
2-5 Zmax none none Zmax Zmax> YL
3-6 none none yL VL Vinin» Zmax» YU» YL
4-17 none yL Zmax Zmax> YL Vinin> Zmax Ju, YL
5-8 Zmax Zmaxs YL Yu, YL Zmaxs> YL infeasible
6-9 none Zmax» YL YU, YL Zmax> YU» VL infeasible
7-10 Zmaxs YU none yu yu infeasible
8-11 Zmax Zmax yu yu infeasible
9-12 Vnin» Zmax Zmax Zmax» YU Yyu infeasible
10-13 Vinin»> Zmax Zmax» YL yu none infeasible
11-14 Vinin» Zmax none Zmax Zmax infeasible
12-15 Zmax Zmax Zmax» YL YU infeasible
13-16 Zmax none Zmax»> YL Zmax infeasible
14-17 none Zmaxs YU Zmaxs YL yu infeasible
15-18 Zmax> YU YL Zmax Zmax Zmax» YU infeasible

4 Vnin — lower bound on speed, Eq. (6); Zmax — upper bound on altitude loss, Eq. (9); and y; — upper bound on lateral

displacement.
bHere yz — lower bound on lateral displacement.
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Fig.16 Solutions of the maximum speed optimization for three differ-
ent initial guesses; slalom entry speed V = 69 kn.

of the maneuver (it is actually violated slightly in the first segment),
when the helicopterhas not yet been able to accelerate, and after the
1000-ft marker has been cleared. At higher speeds, the helicopter
stays in the corridor with greater difficulty, especially around and
between the markers, as clearly shown by the constraint activity.
Finally, for an entry speed of 71 kn it becomes impossible for the
helicopterto stay in the corridor and to clear the 500-ft marker with
a lateral displacement of less than 100 ft; after two consecutive
infeasible segments the optimization is terminated.

The harmonic content of the lateral cyclic inputs is shown in
Fig. 15, which includes the values of the fundamental frequency,
defined as the inverse of the time required to complete the maneuver.
As in the trajectory matching solutions, the largest contributionsare
at twice the fundamental frequency because of the inputs required to
clear the two markers. As the maneuver becomes more aggressive,
higher frequency contributions develop. A peak appears at about
2 rad/s, corresponding to the Dutch roll mode in steady straight
flight.
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Fig. 17 Time histories of lateral cyclic pitch ;. for three solutions of
the maximum speed slalom; slalom entry speed V = 69 kn.

VI. Multiple Solutions

If the design space is not convex, optimization problems may
have multiple solutions corresponding to local minima. To deter-
mine whether this is the case in the present study, the maximum
speed problem with an entry speed of 69 kn was solved three times,
each with a different initial guess for the pilot inputs. The resulting
trajectories are shown in Fig. 16. Clearly, the optimum trajectory
depends on the initial guess, indicating the existence of local min-
ima. The corresponding times required to fly the slalom differ by
almost a second, or slightly less than 10% of the total time. The lat-
eral cyclic inputs for each solution are shown in Fig. 17. The general
trend is the same for the three solutions, but there is little overlap,
and there are occasional differences of 4 deg or more. Whether the
nonuniqueness of the optimal solution is a practical problem will
depend on the reasons for performing the inverse simulation. For
handling qualities studies, the scatter in the solutions may help pre-
dict the amount of scatter in pilot ratings to be expected for a given
maneuver. On the other hand, if the inverse simulation is used for
simulation validation, then additional constraints may have to be
placed on the solution to make it unique.

VII. Summary and Conclusions

This paper presentedan inverse simulationmethodologybased on
numerical optimization. The methodology was applied to a slalom



maneuver defined through a set of criteria, rather than a prescribed
path, as is the case in the ADS-33D handling qualities specification.
The inverse simulation was formulated as an optimization problem
with trajectory and dynamic constraints, pilot inputs as design vari-
ables, and an objective function that depends on the problem being
solved. A maximum speed solution was considered in the paper. A
feasible initial solution can be obtained by matching a prescribed
trajectory designed to satisfy all of the constraints of the original
problem. This trajectory matching problem was formulated as an
unconstrainedoptimization that can be independentlyused as a new
techniquefor the traditional problem of inverse simulation with pre-
assigned trajectory.

The main conclusions of the present study are as follows:

1) Numerical optimization is a reliable and flexible tool for in-
verse simulation; both when the required trajectory is prescribed
explicitly and when it is defined indirectly through geometric and
dynamic constraints. For unstable or lowly damped configurations
the optimization is best performed on overlapping segments, rather
than in a single pass covering the entire maneuver.

2) The inverse simulation problem with preassigned trajectory
can have multiple solutions. The multiple solutions of the slalom
maneuver identified in this study all matched very well the preas-
signed trajectory of the aircraft center of gravity but showed notice-
able differencesin the helicopter dynamics and in the required pilot
inputs.

3) When the trajectory is defined indirectly, as is the case in the
ADS-33D specification, there is not a single acceptable trajectory
but rather an entire family. Selecting specific members of this fam-
ily, by specifying an objective function to be minimized, results in
a constrained optimization problem that can itself have multiple so-
lutions, corresponding to local minima in the design space. These
solutions satisfy all of the constraintsbut differ in the time histories
of the aircraft dynamics and of the pilot inputs.

4) Whether or not the nonuniqueness of the optimal solutions is
practically significant will depend on the reasons for performing the
inverse simulation. For handling qualities studies, it may provide an
indication of the amount of scatter in the pilotratings to be expected
for a given aircraft and a given maneuver. If the inverse simulation
is used as part of a simulation validation, then additional constraints
may have to be placed on the solution to make it unique.

Acknowledgments

This research was supported by the National Rotorcraft Tech-
nology Center, under the Rotorcraft Center of Excellence Program,
Technical Monitor, Dr. Yung Yu.

References

!“Aeronautical Design Standard ADS-33D, Handling Qualities Require-
ments for Military Rotorcraft,” U.S. Army Aviation and Troop Command,
St. Louis, MO, July 1994.

ZMCKillip, R. M., Jr., and Perry, T. A., “Helicopter Flight Control System
Design and Evaluation Using Controller Inversion Techniques,” Journal of
the American Helicopter Society, Vol. 37, No. 1, 1992, pp. 66-74.

3Thomson, D. G., and Bradley, R., “Development and Verification of an
Algorithm for Helicopter Inverse Simulation,” Vertica, Vol. 14, No. 2, 1990,

CELI

297

pp- 185-200.

4Bradley, R., and Thomson, D. G., “Handling Qualities and Performance
Aspects of the Simulation of Helicopters Flying Mission Task Elements,”
Proceedings of the Eighteenth European Rotorcraft Forum, Avignon,France,
1992, pp. 139.1-139.15.

5 Whalley, M. S., “Development and Evaluation of an Inverse Solution
Technique for Studying Helicopter Maneuverability and Agility,” NASA
TM 102889 and USAAVS-COM TR 90-A-008, July 1991.

%Hess, R. A., Gao, C., and Wang, S. H., “Generalized Technique for
Inverse Simulation Applied to Aircraft Maneuvers,” Journal of Guidance,
Control, and Dynamics, Vol. 14, No. 5, 1991, pp. 920-926.

THess, R. A., and Gao, C., “A Generalized Algorithm for Inverse Simu-
lation Applied to Helicopter Maneuvering Flight,” Journal of the American
Helicopter Society, Vol. 38, No. 3, 1993, pp. 3-15.

8Rutherford, S., and Thomson, D. G., “Improved Methodology for In-
verse Simulation,” Aeronautical Journal, Vol. 100, No. 993, 1996, pp. 79-
86.

9de Matteis, G., de Socio, L. M., and Leonessa, A., “Solution of Aircraft
Inverse Problems by Local Optimization,” Journal of Guidance, Control,
and Dynamics, Vol. 18, No. 3, 1995, pp. 567-571.

10 ee, S., and Kim, Y., “Time-Domain Finite Element Method for In-
verse Problem of Aircraft Maneuvers,” Journal of Guidance, Control, and
Dynamics, Vol. 20, No. 1, 1997, pp. 97-103.

"Borri, M., Bottasso, C. L., and Montelaghi, F., “Numerical Approach
to Inverse Flight Dynamics,” Journal of Guidance, Control, and Dynamics,
Vol. 20, No. 4, 1997, pp. 742-747.

12Yip, K. M., and Leng, G., “Stability Analysis for Inverse Simulation of
Aircraft,” Aeronautical Journal, Vol. 100, No. 1007, 1998, pp. 345-351.

13Chen, R. T. N., and Jeske, J. A., “Kinematic Properties of the Helicopter
in Coordinated Turns,” NASA TP 1773, April 1981.

14Celi, R., “Hingeless Rotor Dynamics in Coordinated Turns,” Journal of
the American Helicopter Society, Vol. 36, No. 4, 1991, pp. 39-47.

5Brenan, K. E., Campbell, S. L., and Petzold, L. R., The Numerical Solu-
tion of Initial Value Problems in Differential-Algebraic Equations, Elsevier,
New York, 1989.

16Celi, R., “Implementation of Rotary-Wing Aeromechanical Problems
Using Differential-Algebraic Equation Solvers,” Journal of the American
Helicopter Society (submitted for publication).

"Vanderplaats, G. N., Numerical Optimization Techniques for Engineer-
ing Design: With Applications, McGraw-Hill, New York, 1984.

18Vanderplaats, G. N., DOT-Design Optimization Tools, User’s Manual,
VMA Engineering, Inc., Goleta, CA, May 1995.

9Betts, J. T., “Survey of Numerical Methods for Trajectory Optimiza-
tion,” Journal of Guidance, Control, and Dynamics, Vol. 21, No. 2, 1998,
pp. 193-207.

20Rutkowski, M., Ruzicka, G. C., Ormiston, R. A., Saberi, H., and
Jung, Y., “Comprehensive Aeromechanics Analysis of Complex Rotorcraft
Using2GCHAS,” Journal of the American Helicopter Society, Vol.40,No. 4,
1995, pp. 3-17.

2lpanda, B., “A Robust Direct-Integration Method for Rotorcraft Maneu-
ver and Periodic Response,” Journal of the American Helicopter Society,
Vol. 37, No. 3, 1992, pp. 83-85.

22padfield, G. D., Jones, J. P, Charlton, M. T., Howell, S. E., and
Bradley, R., “Where Does the Workload Go When Pilots Attack Manoeu-
vres?, An Analysis of Results from Flying Qualities Theory and Experi-
ment,” Proceedings of the 20th European Rotorcraft Forum, Amsterdam,
The Netherlands, 1994, pp. 83.1-83.23.

23Blanken, C. L., Pausder, H.-J., and Ockier, C. J., “An Investigation of
the Effects of Pitch-Roll (De)Coupling on Helicopter Handling Qualities,”
NASA TM 110349 and USAAVSCOM TR 95-A-003, May 1995.



